Холодильная машина - definition. What is Холодильная машина
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Холодильная машина; Холодильное оборудование
  • Схема холодильной установки

Холодильная машина      

устройство, служащее для отвода теплоты от охлаждаемого тела при температуре более низкой, чем температура окружающей среды. Х. м. используются для получения температур от 10 °С до -150 °С. Область более низких температур относится к криогенной технике (См. Криогенная техника). Х. м. работают по принципу теплового насоса (См. Тепловой насос) - отнимают теплоту от охлаждаемого тела и с затратой энергии (механической, тепловой и т.д.) передают её охлаждающей среде (обычно воде или окружающему воздуху), имеющей более высокую температуру, чем охлаждаемое тело. Работа Х. м. характеризуется их Холодопроизводительностью, которая для современных машин лежит в пределах от нескольких сотен вт до нескольких Мвт.

В холодильной технике (См. Холодильная техника) находят применение несколько систем Х. м. - парокомпрессионные, абсорбционные, пароэжекторные и воздушно-расширительные, работа которых основана на том, что рабочее тело (Холодильный агент) за счёт затраты внешней работы совершает обратный круговой термодинамический процесс (холодильный цикл (См. Холодильные циклы)). В парокомпрессионных, абсорбционных и пароэжекторных Х. м. для получения эффекта охлаждения используют кипение низкокипящих жидкостей. В воздушно-расширительных Х. м. охлаждение достигается за счёт расширения сжатого воздуха в Детандере.

Первые Х. м. появились в середине 19 в. Одна из старейших Х. м. - абсорбционная. Её изобретение и конструктивное оформление связано с именами Дж. Лесли (Великобритания, 1810), Ф. Карре (Франция, 1850) и Ф. Виндхаузена (Германия, 1878). Первая парокомпрессионная машина, работавшая на эфире, построена Дж. Перкинсом (Великобритания, 1834). Позднее были созданы аналогичные машины с использованием в качестве хладагента метилового эфира и сернистого ангидрида. В 1874 К. Линде (Германия) построил аммиачную парокомпрессионную Х. м., которая положила начало холодильному машиностроению.

Парокомпрессионные Х. м. - наиболее распространённые и универсальные Х. м. Основными элементами машин данного типа являются (рис. 1) испаритель, Холодильный компрессор, Конденсатор и терморегулирующий (дроссельный) вентиль - ТРВ, которые соединены трубопроводом, снабженным запорной, регулирующей и предохранительной арматурой. Ко всем элементам Х. м. предъявляется требование высокой герметичности. В зависимости от вида холодильного компрессора парокомпрессионные машины подразделяются на поршневые, турбокомпрессорные, ротационные и винтовые.

В парокомпрессионной Х. м. осуществляется замкнутый цикл циркуляции хладагента. В испарителе хладагент кипит (испаряется) при пониженном давлении pk и низкой температуре. Необходимая для кипения теплота отнимается от охлаждаемого тела, вследствие чего его температура понижается (вплоть до температуры кипения хладагента). Образовавшийся пар отсасывается компрессором, сжимается в нём до давления конденсации pk и подаётся в конденсатор, где охлаждается водой или воздухом. Вследствие отвода теплоты от пара он конденсируется. Полученный жидкий хладагент через ТРВ, в котором происходит снижение его температуры и давления, возвращается в испаритель для повторного испарения, замыкая таким образом цикл работы машины. Для повышения экономической эффективности Х. м. (снижения затрат энергии на единицу отнятого от охлаждаемого тела количества теплоты) иногда перегревают пар, всасываемый компрессором, и переохлаждают жидкость перед дросселированием. По этой же причине для получения температур ниже -30 °С используют многоступенчатые или каскадные Х. м. В многоступенчатых Х. м. сжатие пара производится последовательно в несколько ступеней с охлаждением его между отдельными ступенями. При этом в двухступенчатых Х. м. получают температуру кипения хладагента до -80 °С. В каскадных Х. м., представляющих собой несколько последовательно включенных Х. м., которые работают на различных, наиболее подходящих по своим термодинамическим свойствам для заданных температурных условий хладагентах, получают температуру кипения до -150 °С.

Абсорбционная Х. м. (рис. 2) состоит из кипятильника, конденсатора, испарителя, Абсорбера, насоса и ТРВ. Рабочим веществом в абсорбционных Х. м. служат растворы двух компонентов (бинарные растворы) с различными температурами кипения при одинаковом давлении. Компонент, кипящий при более низкой температуре, выполняет функцию хладагента; второй служит абсорбентом (поглотителем). В области температур от 0 до -45 °С применяются машины, где рабочим веществом служит водный раствор аммиака (хладагент - аммиак). При температурах охлаждения выше 0 °С преимущественно используют абсорбционные машины, работающие на водном растворе бромида лития (хладагент - вода). В испарителе абсорбционной Х. м. происходит испарение хладагента за счёт теплоты, отнимаемой от охлаждаемого тела. Образующиеся при этом пары поглощаются в абсорбере. Полученный концентрированный раствор перекачивается насосом в кипятильник, где за счёт подвода тепловой энергии от внешнего источника из него выпаривается хладагент, а оставшийся раствор вновь возвращается в абсорбер. Что касается газообразного хладагента, то он из кипятильника направляется в конденсатор, конденсируется там и затем поступает через ТРВ в испаритель на повторное испарение. Применение абсорбционных машин весьма выгодно на предприятиях, где имеются вторичные энергоресурсы (отработанный пар, горячая вода, отходящие газы промышленных печей и т.д.). Абсорбционные Х. м. изготавливают одно- или двухступенчатыми.

Пароэжекторная Х. м. состоит из (рис. 3) эжектора, испарителя, конденсатора, насоса и ТРВ. Хладагентом служит вода, в качестве источника энергии используется пар давлением 0,3-1 Мн/м2 (3-10 кгс/см2), который поступает в сопло Эжектора, где расширяется. В результате в эжекторе и, как следствие, в испарителе машины создаётся пониженное давление, которому соответствует температура кипения воды несколько выше 0 °С (обычно порядка 5 °С). В испарителе за счёт частичного испарения происходит охлаждение подаваемой потребителю холода воды. Отсосанный из испарителя пар, а также рабочий пар эжектора поступает в конденсатор, где переходит в жидкое состояние, отдавая теплоту охлаждающей среде. Часть воды из конденсатора подаётся в испаритель для пополнения убыли охлаждаемой воды.

Воздушно-расширительные Х. м. относятся к классу холодильно-газовых машин (См. Холодильно-газовые машины). Хладагентом служит воздух. В области температур примерно до -80 °С экономическая эффективность воздушных машин ниже, чем парокомпрессионных. Более экономичными являются регенеративные воздушные Х. м., в которых воздух перед расширением охлаждается либо в противоточном теплообменнике, либо в теплообменнике-регенераторе. В зависимости от давления используемого сжатого воздуха воздушные Х. м. подразделяются на машины высокого и низкого давления. Различают воздушные машины, работающие по замкнутому и разомкнутому циклу.

Лит.: Холодильные машины, под ред. Н. Н. Кошкина, М., 1973: Холодильная техника. Энциклопедический справочник, т. 1-3, М., 1960-62.

А. Н. Фомин.

Рис. 1. Схема парокомпрессионной холодильной машины: 1 - испаритель; 2 - компрессор; 3 - конденсатор; 4 - теплообменник; 5 - терморегулирующий вентиль.

Рис. 2. Схема абсорбционной холодильной машины: 1 - испаритель; 2 - абсорбер; 3 - насос; 4 - терморегулирующий вентиль; 5 - кипятильник; 6 - конденсатор.

Рис. 3. Схема пароэжекторной холодильной машины: 1 - эжектор; 2 - испаритель; 3 - потребитель холода; 4 - насос; 5 - терморегулирующий вентиль; 6 - конденсатор.

ХОЛОДИЛЬНАЯ МАШИНА      
осуществляет искусственное охлаждение с помощью подводимой энергии (механической, тепловой и т. д.). Различают холодильные машины компрессионные (газовые и паровые), абсорбционные, пароэжекторные и термоэлектрические.
КОМПАУНД-МАШИНА         
  • Машина с тройным расширением пара
(от англ. compound - составной), двухцилиндровая паровая машина двойного действия с параллельным расположением цилиндров; пар, отработав в одном цилиндре, поступает в другой (большего диаметра).

ويكيبيديا

Холодильная установка

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от +10 °С и до −153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос тепла осуществляется за счёт потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).

Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в различных устройствах, в которых необходимо поддерживать заданную пониженную температуру и удалять излишнюю влажность воздуха.

Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладоносителем, который переносит тепло от охлаждаемого объекта к холодильной установке .

Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной парокомпрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: парокомпрессионные, упрощённо называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже −90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.

Каждая разновидность машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту. Ряд подробностей о холодильных машинах и установках можно найти в статье домашний холодильник, кулер, чиллер и кондиционер.

Поток хладагента регулируется с помощью ТРВ, а работу ТРВ контролирует термобаллон, который закреплен в входящую трубу испарителя.

أمثلة من مجموعة نصية لـ٪ 1
1. Его-то и обеспечивает холодильная машина образца 60-х годов.
2. Друг за другом стали выходить из строя холодильная машина, турбогенератор, опреснительная установка.
3. За прохладу в салоне Lada Kalina отвечает "холодильная машина" марки Panasonic.
4. Лот N2.Холодильная машина "Copeland" тип D4ST200X 2004 г.в. начальная цена -36' тыс. руб.
5. АЗТ-3-680; Холодильная машина МВВ-4; Центрифуга МПУ- 700; Эл. двигатель АК25'ЕУ-2 (2 шт); Эл. таль G-1 т ТЭ-1,0; Компьютер Pentium (с/б, монитор, клавиат.) TVS; Компьютер Р-150 (с/б, монит., клавиат.) с принтером Tatung; Компьютер Pentium (с/б, монитор, клавиат) Datas; Копировальная машина Olivetti Copia '017; Принтер лазерный HPLJ1100 (2 шт); ПТК 386 ДХ (с/б, монит., клавиат.) Color Tatung; Сервер (с/б, монитор, клавиат.) DTK computers; Метран (на обработке) 400в-2; Набор мебели (' предметов, черн. цвет); Щит управления; Холодильник Мир; Конвейер для ТО; Подъемние 238; Стенд Элкон; Трансформатор.